

Google DeepMind

Open-domain Visual Entity Recognition:

Towards Recognizing Millions of Wikipedia Entities

Hexiang Hu⁺, Yi Luan⁺, Yang Chen[‡], Urvashi Khandelwal[‡], Mandar Joshi[‡], Kenton Lee[‡], Kristina Toutanova[‡], Ming-Wei Chang[‡] t: Google DeepMind, t: Georgia Tech

(a) Entity Generation

BM25 Search

WikipediA

Encoder

(Paper ID: 3031)

Introduction

We introduce a new task called Open-domain Visual Entity RecognitioN, with the goal of recognizing open-domain visual entities in the wild.

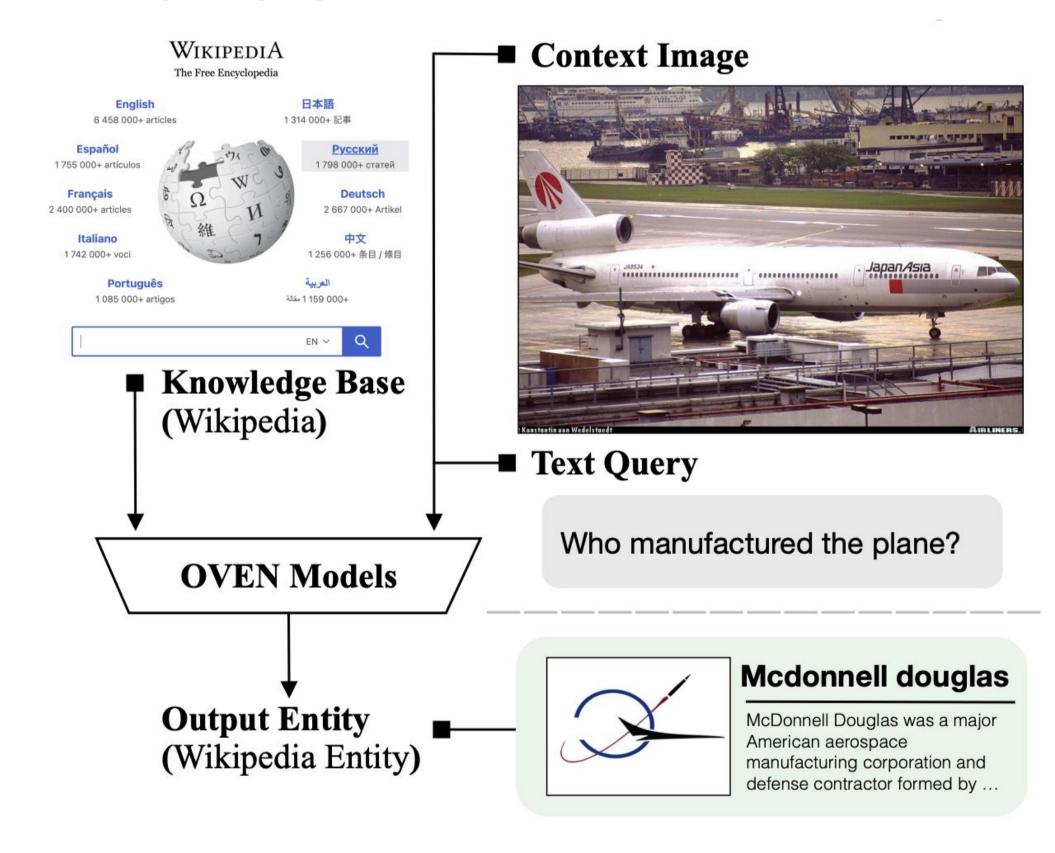
Different from traditional recognition, OVEN focus on recognizing an queried visual entity from a very large label space defined by knowledge base (KB), such as English-Wikipedia, with 6M+ entities.

Different from visual QA tasks, OVEN focus on generalizable visual recognition, and aims to link queried image with the Web KB.

Contribution.

- Formalize and introduce the task of OVEN.
- Unify 14 image recognition, or VQA datasets, and build a general domain OVEN dataset that recognizes 6M wikipedia entities.
- Perform human annotation on the proposed task, for evaluation and upper-bound performance study.
- Evaluate different type of SoTA multimodal foundation models on our dataset, and characterize the pros and cons of those models.

What is OVEN?



Task Definition. The *input* to an OVEN model is a pair of image x^p and query text x^t, with text x^t expressing the recognition intent (e.g. "what is the model of aircraft?" vs. "what is the airline company?") that corresponding to the image x^p.

Given a knowledge base $\mathcal{K} = \{(e, p(e), t(e)) \mid e \in \mathcal{E}\}$ of triples:

- e: database identity, *i.e., Wikidata id (Q7395937)*
- t(e): textual info of an entity, i.e., the name of entity.
- p(e): visual info of an entity, i.e., Wiki images of the entity.

The goal of OVEN learner is to predict the antity e of a given input example $x = (x^t, x^p)$ from the KB k

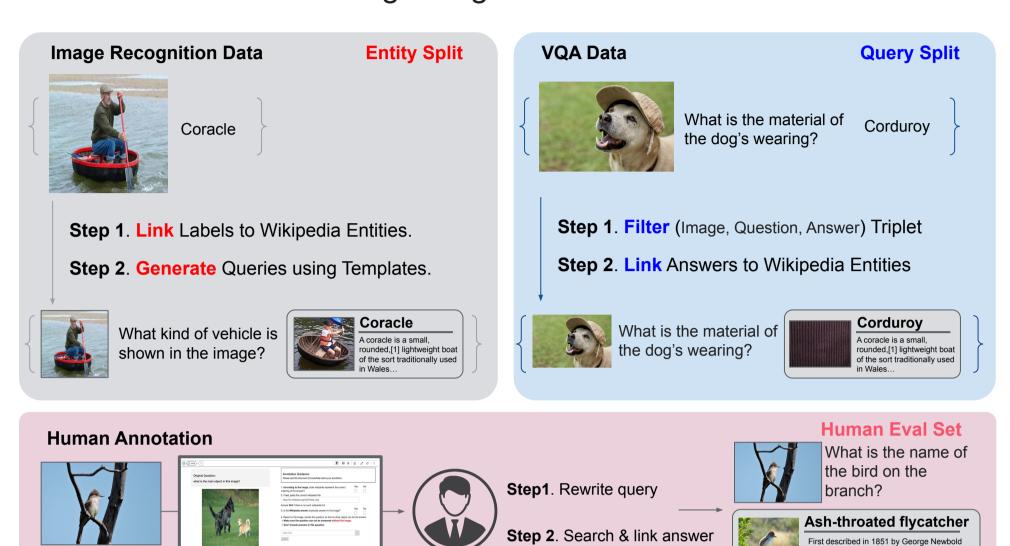
Remark 1. OVEN can be seen as a specialized VQA task, focus on answering "What" questions.

Remark 2. Different from VQA, the answer to OVEN is a visual entity that grounded on the knowledge base (Wikipedia), instead of free-from string, which suppose to have a concrete definition.

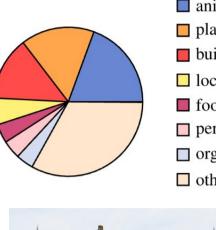
Remark 3. OVEN can also be viewed as a recognition task, but without any classification prior (e.g. animal, or vehicle classification). Instead, the text query input x^t specifies the domain and goal of recognition, which reduces ambiguity in open-domain recognition.

Dataset Construction

We re-annotate 14 existing recognition and VQA datasets.



Step 2. Search & link answer



A: Track lighting (Q117208161)

location 5.8 ■ food 4.1% person 4.0%

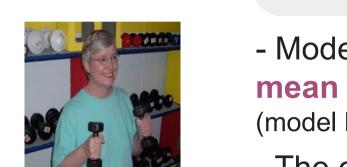
(b) Entity Retrieval

Train Set Val Set Test Set Human Set organization 3.8%

A: Toyota Seguoia (Q1512971)

WikipediA

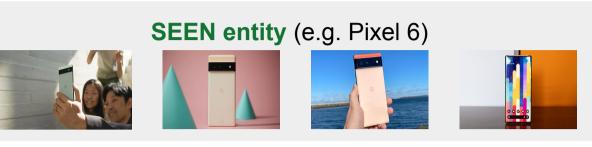
2,032,340



Q: Which category of equipme is shown in the image?

Evaluation focus on **Generalization**

Model Training



Model Evaluation

- Model are evaluated using the Harmonic mean over SEEN & UNSEEN accuracies. (model has to balance fitting and generalization)
- The overall performance is then computed as the Harmonic mean of Entity and Query split performance.

Models for OVEN

Input:

Entity Name in KB

PaLI-17B: Multimodal Encoder, Text Decoder

- Input:
 - o Image & Text of Entity in KB

Context Image (I) + Query Text (T) Output:

(b) Entity Retrieval Dual Encoders:

- Context Image + Query Text
- Output:
- Entity Name in KB
- CLIP2CLIP: Ensemble of CLIP models

Benchmark Results

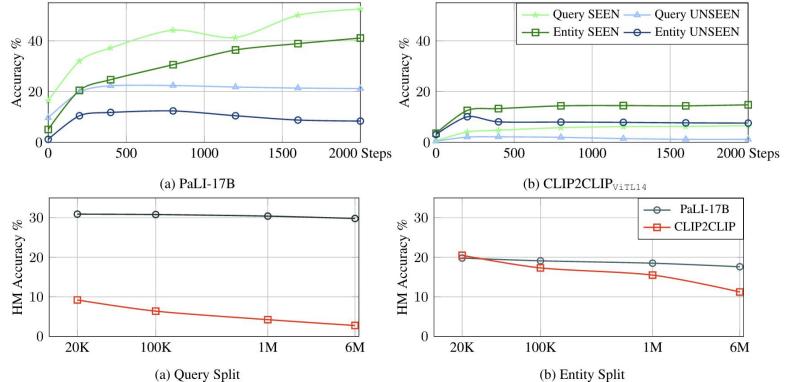
We evaluate prior entity retrieval and generation models (SoTA at the time) on OVEN.

		Entity $Split_{(Test)}$		Query $Split_{(Test)}$		$Overall_{(Test)}$	Human Eval		
	# Params	SEEN	UNSEEN	SEEN	UNSEEN	HM	SEEN	UNSEEN	НМ
Dual Encoders:									
CLIP_{ViTL14}	0.42B	5.6	4.9	1.3	2.0	2.4	4.6	6.0	5.2
 CLIP Fusion_{ViTL14} 	0.88B	33.6	4.8	25.8	1.4	4.1	18.0	2.9	5.0
CLIP2CLIP_{ViTL14}	0.86B	12.6	10.5	3.8	3.2	5.3	14.0	11.1	12.4
Encoder Decoder:									
◆ PaLI-3B	3B	19.1	6.0	27.4	12.0	11.8	30.5	15.8	20.8
◆ PaLI-17B	17B	28.3	11.2	36.2	21.7	20.2	40.3	26.0	31.6
Human+Search ⁶	-	:-	-	-	-	-	76.1	79.3	77.7

Observation 1. PaLI-based models are significantly better than CLIP (Performance gap on **Query Split** is bigger)

Observation 2. Scaling PaLI from 3B to 17B creates significant improvement (this scaling includes both change in language model: 1B to 13B, and change in visual model: ~2B to ~4B)

Observation 3. Human + Search Engine is significantly better than current models



Ablation 1. Over-finetuning models on OVEN leads to strong SEEN acc but weak UNSEEN acc, thus bad overall performance

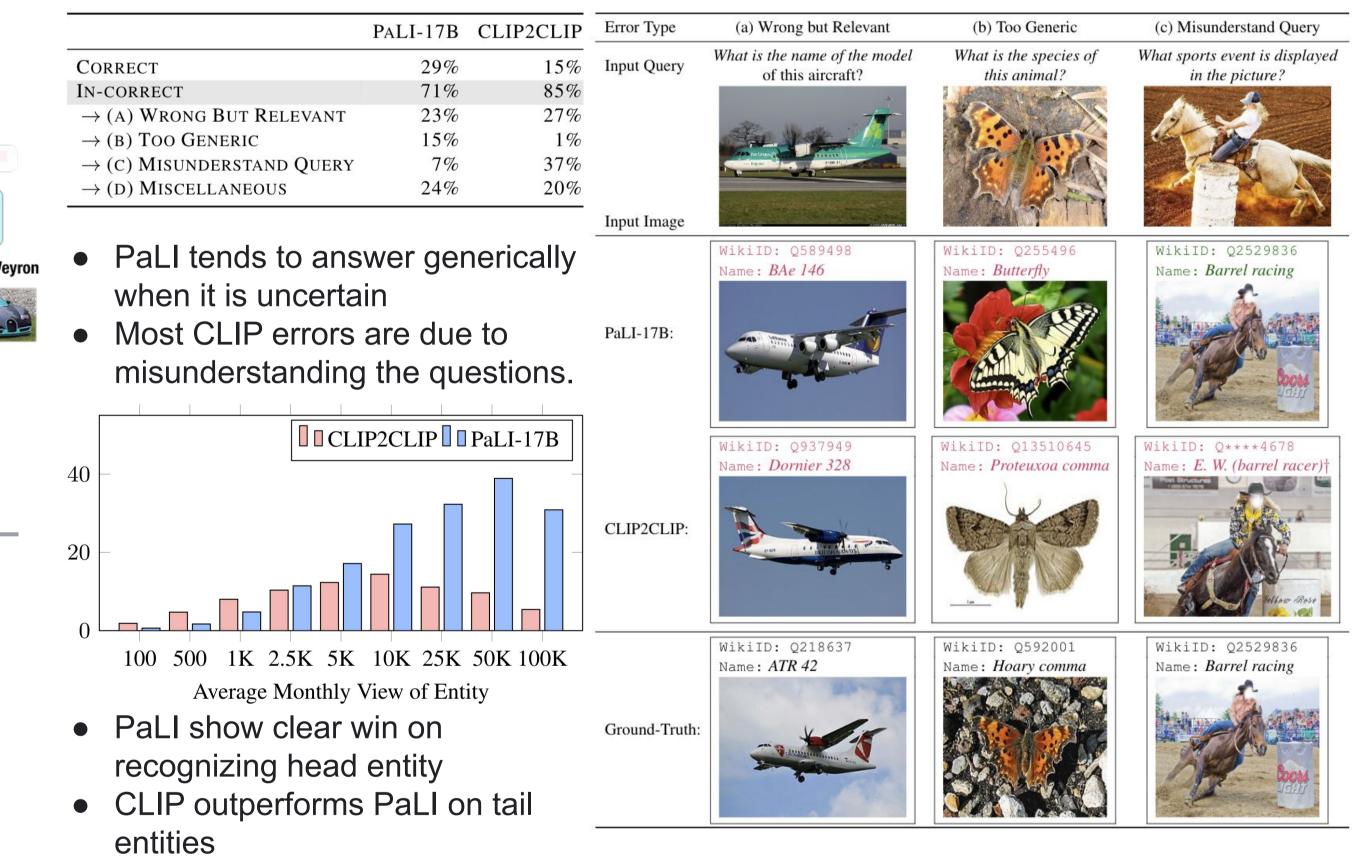
Ablation 2. As the # of Wikipedia candidate space grows, the intrinsic task difficulty grows. Meanwhile, the performance of retrieval model is more affected.

Model Analysis

Q: What is the main

object in this image?

A: Coffee percolator



Towards Understanding Visual Info-Seeking Question

In a follow-up work (dubbed InfoSeek), we propose another task that extend the scope of open-domain visual recognition to open-domain visual info-seeking question answering.

INFOSEEK

Q: What days might I most commonly go to this building? A: Sunday **Previous VQA**

Q: Who designed this building? A: Antonio Barluzzi Q: Which year was this building constructed?

We construct datasets to support Knowledge-intensive VQA, s.t. Question are visual

- info-seeking (asking unknown rather than common sense)
- Answers are fine-grained
- It shows that SoTA multimodal foundation model still can not answer such question well

Resources

Dataset: https://open-vision-language.github.io/oven

A: 1955

Contributed Baseline & Eval: https://github.com/edchengg/oven_eval Follow-up InfoSeek Project: https://open-vision-language.github.io/infoseek