

Motivation:

Different Visual QA datasets has different evaluation criteria. (**Open-end** vs. **Multiple Choice**)

Open-end

VQA 1&2

State-of-the-Art: Multi-way Classifiers on the top-frequent answers [2,4,7,18,28]

Drawback: Can not handle OOV answers

Multiple Choice

Visual7W

qaVG

State-of-the-Art: Binary classifiers on a (I, Q, A) triplet. Output the one with highest probability [7,13, 25]

Drawback: Sensitive to the bias in the MC dataset [13]

Research Question: How to excel different settings simultaneously? How to transfer across settings?

Our Contributions:

1. A probabilistic framework with efficient

training over large-scale answer vocabulary.

2. An efficient factorization model that

Unifies across Visual QA settings and datasets.

3. Extensive studies **On** and **across** multiple Visual QA benchmarks.

Learning Answer Embeddings for Visual Question Answering Hexiang Hu*, Wei-Lun (Harry) Chao*, Fei Sha **University of Southern California**

Our Approach:

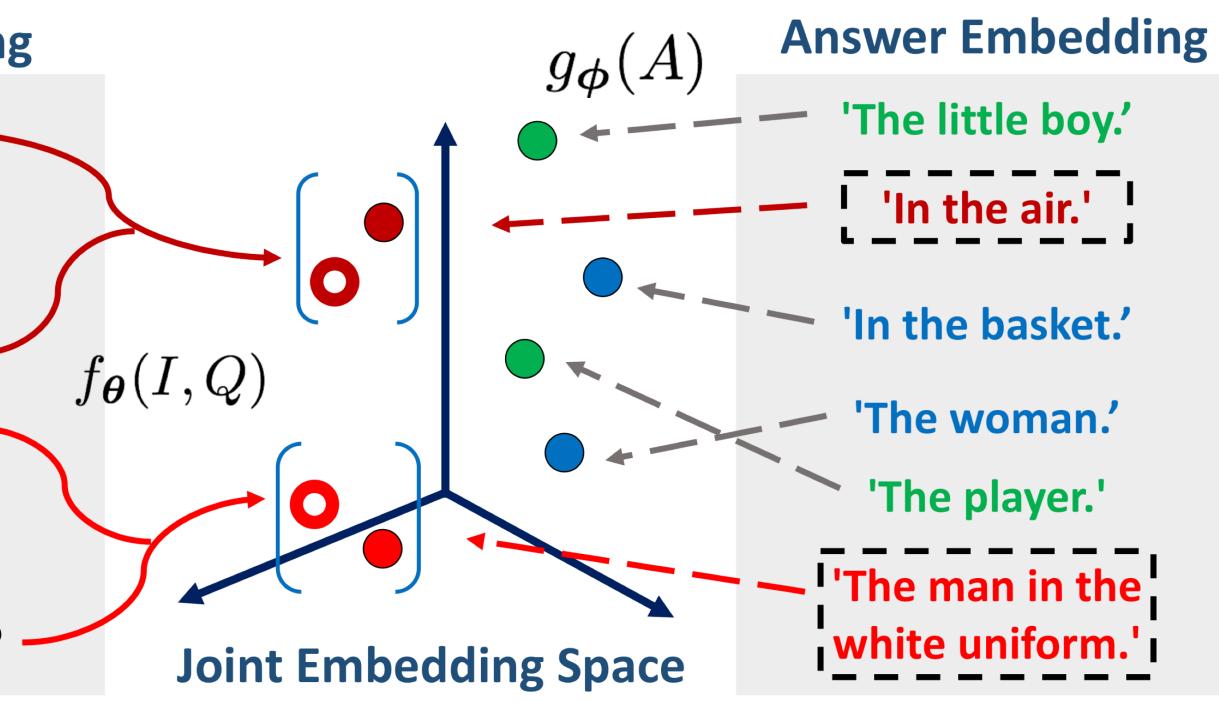
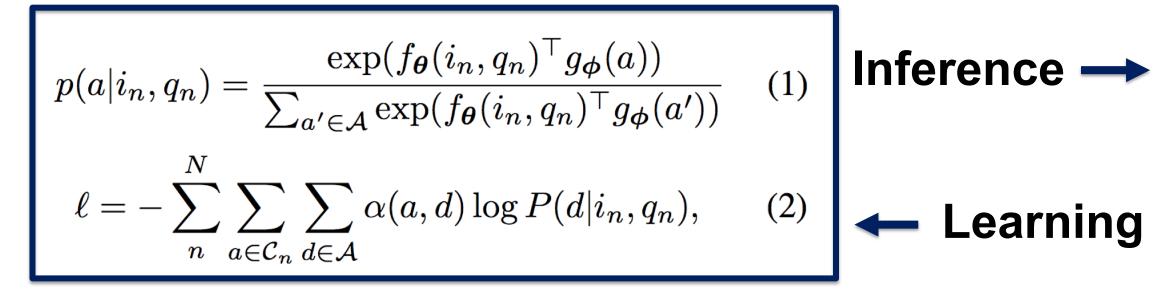
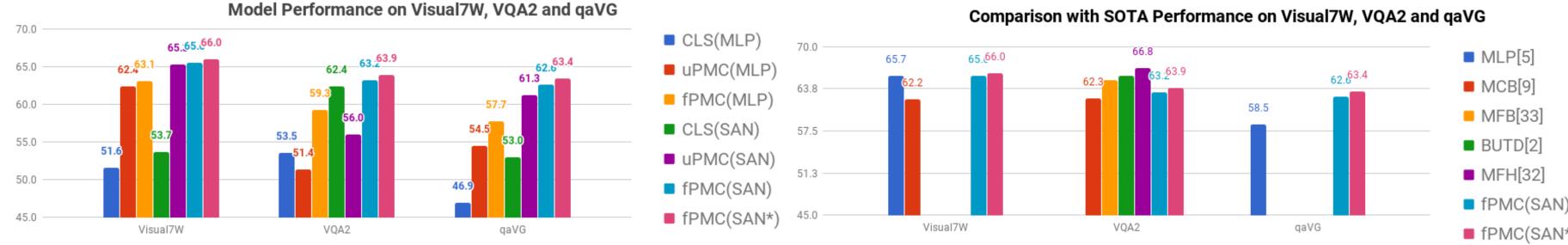

Factorize Visual QA Model as Embedding Learning

Image-Question Embedding

Q1: Where is the ball?



Q2: Who is holding the bat?


Most multimodal encoders (e.g. MLP, SAN, MCB) could be used for $f_{\theta}(I,Q)$ A variety of **text (sequence) encoders** (e.g. BoW, LSTM) could be used for $g_{\phi}(A)$

Probabilistic Model of Compatibility (PMC)

Experimental Results:

Performances with Different VQA Datasets

 $a^* = \arg \max_{a \in \mathcal{A}} f_{\boldsymbol{\theta}}(i,q)^\top g_{\boldsymbol{\phi}}(a),$

(8)

(a) Stochastic negative **sampling** for efficient training (b) Weighting with $\alpha(a,d)$ to incorporate **semantics**

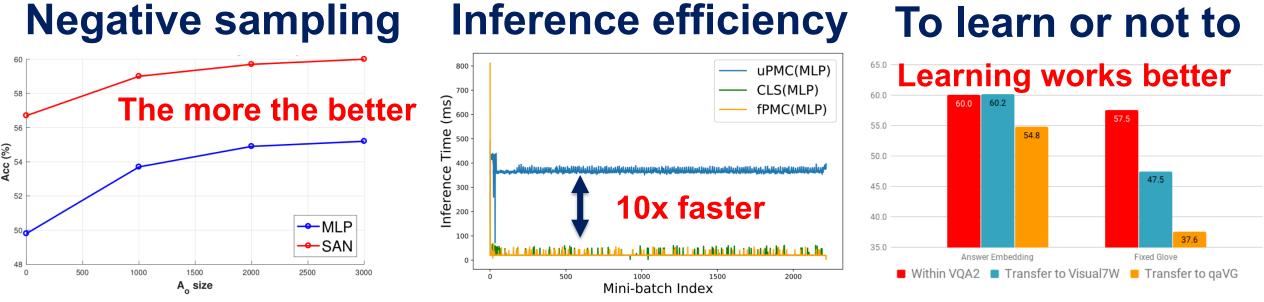
Transfer Learning across VQA Datasets

Settings. Vocab cov

Transfer Results. Our factorized model

PMC outperform all me

Table 5. Results of cross-dataset transfer using either classification-based models or our models (PMC) for Visual QA. ($f_{\theta} = SAN$) Visual7W VQA2 qaVG


	CLS	uPMC	fPMC	fPMC*	CLS	uPMC	fPMC	fPMC*	CLS	fPMC	fPMC	fPMC*
Visual7W	53.7	65.3	65.6	66.0 ↑	19.1	18.5	19.8 ↑	19.1	42.8	52.2	54.8 ↑	54.3
VQA2	45.8	56.8	60.2	61.7 ↑	59.4	56.0	60.0	60.9 <u>†</u>	37.6	51.5	54.8	56.8 ↑
qaVG	58.9	66.0	68.4	69.5 †	25.6	23.6	25.8	26.4 ↑	53.0	61.2	62.6	63.4 ↑

Detailed Results on Seen/Unseen Answers.

Table 2. Analysis of cross dataset performance over Seen/Unseen answers using either CLS or PMC for Visual QA

		Visual / W											
		CLS(SAN)			uPMC(SAN)			fPMC(SAN)			fPMC(SAN*)		
		S	U	All	S	U	All	S	U	All	S	U	All
-	VQA2	59.8	25.0	45.8	57.4	54.6	56.8	60.7	58.5	60.2	61.7	59.4	62.5
	qaVG	63.4	25.0	58.9	66.7	45.3	66.0	69.1	47.7	68.4	70.2	46.9	69.5

Ablation Study Negative sampling

Visualization of Answer Embeddings

Answers cluster with respect to syntax and semantics

verage	Table 6. The # of c	# of common answers across datasets (training set)							
		Top-	$-K \mod K$	st frequ	Total # of				
5.	Dataset	1 K	3K	5K	10K	all	unique answers		
I with nethods	VQA2, Visual7W	451	1,262	2,015	3,585	10K	137K		
	VQA2, qaVG	495	1,328	2,057	3,643	11 K	149K		
	Visual7W, qaVG	657	1,890	3,070	5,683	27K	201K		

To learn or not to

Learning answer embeddings improves across multiple datasets. Our framework leverages SOTA embeddings of image & text.