Being Negative but Constructively: Lessons Learnt from Creating Better Visual Question Answering Datasets

Hexiang (Frank) Hu*

Wei-Lun (Harry) Chao*

Fei Sha

Vision and language

Computer Vision

Visual Captioning

Natural Language Image Retrieval

Visual Question Answering (Visual QA) Natural Language Processing

(learning signal)

(test environment)

Vision and language

Computer Vision

Visual Captioning

Natural Language Image Retrieval

Visual Question Answering (Visual QA) Natural Language Processing

How to design good datasets?

Outline

- Introduction on Visual QA
- Issues on existing datasets

Machines can do well while ignoring either visual or language information!

• Our contributions:

➢ Diagnosis of the issues

Automatic procedures to remedy existing datasets

Comprehensive evaluation on five existing datasets

Outline

- Introduction on Visual QA
- Issues on existing datasets

Machines can do well while ignoring either visual or language information!

- Our contributions:
 - ➢ Diagnosis of the issues
 - >Automatic procedures to remedy existing datasets
 - Comprehensive evaluation on five existing datasets

Visual question answering (Visual QA)

comprehend and reason with both visual and language information

Evaluation

Scicetion decuracy as i

• Goal:

comprehend and reason with both visual and language information

Outline

- Introduction on Visual QA
- Issues on existing datasets

Machines can do well when they ignores either visual or language information!

- Our contributions:
 - ➢ Diagnosis of the issues
 - >Automatic procedures to remedy existing datasets
 - Comprehensive evaluation on five existing datasets

How Visual QA datasets are created?

• Generate decoys:

- Human generation according to (Q, T) [Visual7W]
- Random or high-frequency (target) answers [VQA]

Detailed analysis on Visual7W

• Model: MLP with (I, Q, C) as the input [following Jabri et al., 2016]

Given an IQA triplet, where $A = \{C_1, ..., C_K\}$ $M(I, Q, C_1)$ \vdots $M(I, Q, C_k)$ argmax :MLP $M(\mathbf{I}, \mathbf{Q}, \mathbf{C}_{\mathbf{K}})$ Score

	a b c d	Question What vehicle is pict A bicycle. A bus. A cab. A train.	tured?
Information	Machines	Humans	
Random	25.0%	25.0%]

65.7%

88.4%

[Example from Visual7W, Zhu et. al.]

I + Q + A

[Example from Visual7W, Zhu et. al.]

		C W	Luestion /hat vehicle is pict	ured
2		a. b. c. d.	A bicycle. A bus. A cab. A train.	
Information	Machines	5	Humans	
Random	25.0%		25.0%	
I + Q + A	65.7%		88.4%	
Q + A	58.2%		36.4%	

[Example from Visual7W, Zhu et. al.]

	a. b c. d	? . A bicycle. . A bus. . A cab. . A train.	
Information	Machines	Humans	
Random	25.0%	25.0%	

65.7%

62.4%

88.4%

73.5%

[Example from Visual7W, Zhu et. al.]

I + Q + A

I+A

Information		a. A bicycle. b. A bus. c. A cab. d. A train.	
Information	Machines	Humans	
Random	25.0%	25.0%	

Machines can do well while ignoring information!

[Example from Visual7W, Zhu et. al.]

Outline

- Introduction on Visual QA
- Issues on existing datasets

Machines can do well while ignoring either visual or language information!

• Our contributions:

Diagnosis of the issues

Automatic procedures to remedy existing datasets
Comprehensive evaluation on five existing datasets

Diagnosis: Shortcuts in decoys

(1) Decoys are less frequently used as targets

A frequency based baseline

 $\mathcal{S}core(\mathbf{C}) = \frac{\# \text{ of } \mathbf{C} \text{ as } \mathbf{T}}{\# \text{ of } \mathbf{C} \text{ as } \mathbf{T} + \# \text{ of } \mathbf{C} \text{ as } \mathbf{D}}$ $Prediction = \operatorname{argmax} \mathcal{S}core(C)$ $C \in A$

48% accuracy

Diagnosis: Shortcuts in decoys

(2) Decoys might not be visually grounded in images

machines can perform attribute/object detection

(3) Decoys might not be grounded in questions

[Example from Visual7W, Zhu et. al.]

Outline

- Introduction on Visual QA
- Issues on existing datasets

Machines can do well while ignoring either visual or language information!

• Our contributions:

Diagnosis of the issues

>Automatic procedures to remedy existing datasets

Comprehensive evaluation on five existing datasets

Principles for decoys

• Neutrality:

Equal likely used as the target

• IoU (Image-only-Unresolvable):

Plausible to the image

• QoU (Question-only-Unresolvable):

Plausible to the question

Automatic procedures

- Assumptions:
 - \succ A dataset with (I, Q, T) triplets is given.
 - \succ An image is associated with multiple (Q, T).
- For a (I, Q, T) triplet:

IoU-decoys: from T' of triplets with the same I

Q: What vehicle is pictured?

Q': When is the picture taken? T': **Daytime.**

Automatic procedures

- Assumptions:
 - \succ A dataset with (I, Q, T) triplets is given.
 - \succ An image is associated with multiple (Q, T).
- For a (I, Q, T) triplet:

IoU-decoys: from T' of triplets with the same I

QoU-decoys: from T' of triplets with similar Q'

Q: What vehicle is pictured?

Q': What is the vehicle? T': **A truck.**

Automatic procedures

- Assumptions:
 - \succ A dataset with (I, Q, T) triplets is given.
 - \succ An image is associated with multiple (Q, T).
- For a (I, Q, T) triplet:

IoU-decoys: from T' of triplets with the same I

QoU-decoys: from T' of triplets with similar Q'

Neutrality follows naturally

Illustration

				Question: What vehicle Candidate An Orig a. A car. b. A bus. c. A cab. d. A train.	e is pictured? swers: ginal (0.2083) (0.6151) (0.5000) √ (0.7328)	Freq- Baseline: 48%	
Frea-	Image only Unresolva	ble (IoU)	Ques	stion only Unres	olvable (QoU)	Frea-	
Basalina	a. Overcast.	X (0.5455)	a. A bi	cycle.	(0.2813)	Pacalina	
Daseille.	b. Daytime.	(0.4941)	b. A tr	uck.	🗶 (0.5364)	Baseline:	
26%	c. A building.	(0.4829)	c. A bo	at.	(0.4631)	30%	
	d. A train.	(0.5363)	d. A tra	ain.	(0.5079)		

[Numbers are Score(C); accuracy are based on each set of decoys.]

Outline

- Introduction on Visual QA
- Issues on existing datasets

Machines can do well while ignoring either visual or language information!

• Our contributions:

- ➢ Diagnosis of the issues
- >Automatic procedures to remedy existing datasets

Comprehensive evaluation on five existing datasets

Experimental setup

Five datasets

Visual Genome (VG) [IJCV 2017]

What is there in front of the sofa? Ground truth: table

COCOQA 5078 How many leftover donuts is the red bicycle holding? Ground truth: three

COCOQA [NIPS 2015]

How many children are in the bed?

Where is the child sitting? fridge arms

man

Who is wearing glasses?

Experimental setup

• Five datasets: all with images from MSCOCO

Dataset	# Training/Test triplets	Original decoys
Visual7W [CVPR 2016]	69K/42K	3 (4 choose 1)
VQA [ICCV 2015]	248K/121K	17 (18 choose 1)
Visual genome [IJCV 2017]	727K/433K	None
VQA2 [CVPR 2017]	444K/214K	None
COCOQA [NIPS 2015]	79K/39K	None

Create 3 IoU & 3 QoU decoys (6 decoys in total)
Remove Yes/No triplets from VQA, VQA2 (~30%)

Original vs. New

Visual7W

VQA-

(exclude YES/NO)

Method	Original	loU + QoU
MLP-A	52.9	17.7
MLP-IA	62.4	23.6
MLP-QA	58.2	37.8
MLP-IQA	65.7	52.0
Human	88.4	84.1
Random	25.0	14.3

Original	loU + QoU
28.8	23.6
43.0	35.5
45.8	38.2
55.6	53.7
-	85.5
5.6	14.3

Original vs. New

Visual7W

VQA-

(exclude YES/NO)

Method	Original	loU + QoU	Original	loU + QoU
MLP-A	52.9	17.7	28.8	23.6
MLP-IA	62.4	23.6	43.0	35.5
MLP-QA	58.2	37.8	45.8	38.2
MLP-IQA	65.7	52.0	55.6	53.7
Human	88.4	84.1	-	85.5
Random	25.0	14.3	5.6	14.3

Algorithm with answer information only fails!

Original vs. New

Visual7W

VQA-

(exclude YES/NO)

Method	Original	loU + QoU	Original	loU + QoU
MLP-A	52.9	17.7	28.8	23.6
MLP-IA	62.4	23.6	43.0	35.5
MLP-QA	58.2	37.8	45.8	38.2
MLP-IQA	65.7	52.0	55.6	53.7
Human	88.4	84.1	-	85.5
Random	25.0	14.3	5.6	14.3

Algorithm needs all information to perform well!

New multiple-choice datasets

Method	VG	VQA2-	COCOQA
MLP-A	19.5	21.3	26.6
MLP-IA	25.2	31.0	60.7
MLP-QA	43.9	37.2	51.4
MLP-IQA	58.5	53.8	75.9
Human	82.5	-	-
Random	14.3	14.3	14.3

Similar Results are obtained across all multiple-choice datasets!

Qualitative results

What is the man wearing?

- A. Black.
- B. Mountains.
- C. The beach.
- D. Board shorts.
- E. He wears white shoes.
- F. A white button down shirt and a black tie.
- G. Wetsuit.

Where do the stairs lead?

- A. A parking lot.
- B. The building.
- C. The windows.
- D. From the canal to the bridge.
- E. Up.
- F. To the building.
- G. To the plane.

What is the color of his

wetsuit?

- A. When waves are bigger.
- B. It is not soft and fine.
- C. It is a picture of nature.

D. Green.

- E. Blue.
- F. Red.
- G. It is black.

What is the right man on the right holding?

- A. Brown.
- B. The man on the right.
- C. Four.
- D. A bottle.
- E. A surfboard.
- F. Cellphone.
- G. A bat.

Failure cases

Who is wearing glasses?

Where are several trees?

Conclusions

- Design good multiple-choice Visual QA datasets
- Analyze issues in existing datasets

Machines can do well while ignoring either visual or language information!

• Propose automatic procedures to remedy

IoU-decoys: from T' of triplets with the same I

QoU-decoys: from T' of triplets with similar Q'

• Conduct comprehensive experiments to validate

Q & A

All curated datasets available at: http://www.teds.usc.edu/website_vqa/

Hexiang (Frank) Hu*

Wei-Lun (Harry) Chao*

Fei Sha

